491 lines
23 KiB
HTML
491 lines
23 KiB
HTML
<html>
|
|
<head>
|
|
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
|
|
<title>Modified Bessel Functions of the First and Second Kinds</title>
|
|
<link rel="stylesheet" href="../../boostbook.css" type="text/css">
|
|
<meta name="generator" content="DocBook XSL Stylesheets V1.78.1">
|
|
<link rel="home" href="../../index.html" title="Math Toolkit">
|
|
<link rel="up" href="../bessel.html" title="Bessel Functions">
|
|
<link rel="prev" href="bessel_root.html" title="Finding Zeros of Bessel Functions of the First and Second Kinds">
|
|
<link rel="next" href="sph_bessel.html" title="Spherical Bessel Functions of the First and Second Kinds">
|
|
</head>
|
|
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
|
|
<table cellpadding="2" width="100%"><tr>
|
|
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../boost.png"></td>
|
|
<td align="center"><a href="../../../../../../index.html">Home</a></td>
|
|
<td align="center"><a href="../../../../../../libs/libraries.htm">Libraries</a></td>
|
|
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
|
|
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
|
|
<td align="center"><a href="../../../../../../more/index.htm">More</a></td>
|
|
</tr></table>
|
|
<hr>
|
|
<div class="spirit-nav">
|
|
<a accesskey="p" href="bessel_root.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../bessel.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="sph_bessel.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
|
|
</div>
|
|
<div class="section">
|
|
<div class="titlepage"><div><div><h3 class="title">
|
|
<a name="math_toolkit.bessel.mbessel"></a><a class="link" href="mbessel.html" title="Modified Bessel Functions of the First and Second Kinds">Modified Bessel Functions
|
|
of the First and Second Kinds</a>
|
|
</h3></div></div></div>
|
|
<h5>
|
|
<a name="math_toolkit.bessel.mbessel.h0"></a>
|
|
<span class="phrase"><a name="math_toolkit.bessel.mbessel.synopsis"></a></span><a class="link" href="mbessel.html#math_toolkit.bessel.mbessel.synopsis">Synopsis</a>
|
|
</h5>
|
|
<p>
|
|
<code class="computeroutput"><span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">special_functions</span><span class="special">/</span><span class="identifier">bessel</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span></code>
|
|
</p>
|
|
<pre class="programlisting"><span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">></span>
|
|
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">cyl_bessel_i</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">v</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">x</span><span class="special">);</span>
|
|
|
|
<span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 13. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">></span>
|
|
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">cyl_bessel_i</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">v</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">x</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter 13. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&);</span>
|
|
|
|
<span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">></span>
|
|
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">cyl_bessel_k</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">v</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">x</span><span class="special">);</span>
|
|
|
|
<span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 13. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">></span>
|
|
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">cyl_bessel_k</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">v</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">x</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter 13. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&);</span>
|
|
</pre>
|
|
<h5>
|
|
<a name="math_toolkit.bessel.mbessel.h1"></a>
|
|
<span class="phrase"><a name="math_toolkit.bessel.mbessel.description"></a></span><a class="link" href="mbessel.html#math_toolkit.bessel.mbessel.description">Description</a>
|
|
</h5>
|
|
<p>
|
|
The functions <a class="link" href="mbessel.html" title="Modified Bessel Functions of the First and Second Kinds">cyl_bessel_i</a>
|
|
and <a class="link" href="mbessel.html" title="Modified Bessel Functions of the First and Second Kinds">cyl_bessel_k</a> return
|
|
the result of the modified Bessel functions of the first and second kind
|
|
respectively:
|
|
</p>
|
|
<p>
|
|
cyl_bessel_i(v, x) = I<sub>v</sub>(x)
|
|
</p>
|
|
<p>
|
|
cyl_bessel_k(v, x) = K<sub>v</sub>(x)
|
|
</p>
|
|
<p>
|
|
where:
|
|
</p>
|
|
<p>
|
|
<span class="inlinemediaobject"><img src="../../../equations/mbessel2.png"></span>
|
|
</p>
|
|
<p>
|
|
<span class="inlinemediaobject"><img src="../../../equations/mbessel3.png"></span>
|
|
</p>
|
|
<p>
|
|
The return type of these functions is computed using the <a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>result
|
|
type calculation rules</em></span></a> when T1 and T2 are different types.
|
|
The functions are also optimised for the relatively common case that T1 is
|
|
an integer.
|
|
</p>
|
|
<p>
|
|
The final <a class="link" href="../../policy.html" title="Chapter 13. Policies: Controlling Precision, Error Handling etc">Policy</a> argument is optional and can
|
|
be used to control the behaviour of the function: how it handles errors,
|
|
what level of precision to use etc. Refer to the <a class="link" href="../../policy.html" title="Chapter 13. Policies: Controlling Precision, Error Handling etc">policy
|
|
documentation for more details</a>.
|
|
</p>
|
|
<p>
|
|
The functions return the result of <a class="link" href="../error_handling.html#math_toolkit.error_handling.domain_error">domain_error</a>
|
|
whenever the result is undefined or complex. For <a class="link" href="bessel_first.html" title="Bessel Functions of the First and Second Kinds">cyl_bessel_j</a>
|
|
this occurs when <code class="computeroutput"><span class="identifier">x</span> <span class="special"><</span>
|
|
<span class="number">0</span></code> and v is not an integer, or when
|
|
<code class="computeroutput"><span class="identifier">x</span> <span class="special">==</span>
|
|
<span class="number">0</span></code> and <code class="computeroutput"><span class="identifier">v</span>
|
|
<span class="special">!=</span> <span class="number">0</span></code>.
|
|
For <a class="link" href="bessel_first.html" title="Bessel Functions of the First and Second Kinds">cyl_neumann</a> this
|
|
occurs when <code class="computeroutput"><span class="identifier">x</span> <span class="special"><=</span>
|
|
<span class="number">0</span></code>.
|
|
</p>
|
|
<p>
|
|
The following graph illustrates the exponential behaviour of I<sub>v</sub>.
|
|
</p>
|
|
<p>
|
|
<span class="inlinemediaobject"><img src="../../../graphs/cyl_bessel_i.png" align="middle"></span>
|
|
</p>
|
|
<p>
|
|
The following graph illustrates the exponential decay of K<sub>v</sub>.
|
|
</p>
|
|
<p>
|
|
<span class="inlinemediaobject"><img src="../../../graphs/cyl_bessel_k.png" align="middle"></span>
|
|
</p>
|
|
<h5>
|
|
<a name="math_toolkit.bessel.mbessel.h2"></a>
|
|
<span class="phrase"><a name="math_toolkit.bessel.mbessel.testing"></a></span><a class="link" href="mbessel.html#math_toolkit.bessel.mbessel.testing">Testing</a>
|
|
</h5>
|
|
<p>
|
|
There are two sets of test values: spot values calculated using <a href="http://functions.wolfram.com" target="_top">functions.wolfram.com</a>,
|
|
and a much larger set of tests computed using a simplified version of this
|
|
implementation (with all the special case handling removed).
|
|
</p>
|
|
<h5>
|
|
<a name="math_toolkit.bessel.mbessel.h3"></a>
|
|
<span class="phrase"><a name="math_toolkit.bessel.mbessel.accuracy"></a></span><a class="link" href="mbessel.html#math_toolkit.bessel.mbessel.accuracy">Accuracy</a>
|
|
</h5>
|
|
<p>
|
|
The following tables show how the accuracy of these functions varies on various
|
|
platforms, along with a comparison to the <a href="http://www.gnu.org/software/gsl/" target="_top">GSL-1.9</a>
|
|
library. Note that only results for the widest floating-point type on the
|
|
system are given, as narrower types have <a class="link" href="../relative_error.html#math_toolkit.relative_error.zero_error">effectively
|
|
zero error</a>. All values are relative errors in units of epsilon.
|
|
</p>
|
|
<div class="table">
|
|
<a name="math_toolkit.bessel.mbessel.errors_rates_in_cyl_bessel_i"></a><p class="title"><b>Table 3.23. Errors Rates in cyl_bessel_i</b></p>
|
|
<div class="table-contents"><table class="table" summary="Errors Rates in cyl_bessel_i">
|
|
<colgroup>
|
|
<col>
|
|
<col>
|
|
<col>
|
|
</colgroup>
|
|
<thead><tr>
|
|
<th>
|
|
<p>
|
|
Significand Size
|
|
</p>
|
|
</th>
|
|
<th>
|
|
<p>
|
|
Platform and Compiler
|
|
</p>
|
|
</th>
|
|
<th>
|
|
<p>
|
|
I<sub>v</sub>
|
|
</p>
|
|
</th>
|
|
</tr></thead>
|
|
<tbody>
|
|
<tr>
|
|
<td>
|
|
<p>
|
|
53
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
Win32 / Visual C++ 8.0
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
Peak=10 Mean=3.4 GSL Peak=6000
|
|
</p>
|
|
</td>
|
|
</tr>
|
|
<tr>
|
|
<td>
|
|
<p>
|
|
64
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
Red Hat Linux IA64 / G++ 3.4
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
Peak=11 Mean=3
|
|
</p>
|
|
</td>
|
|
</tr>
|
|
<tr>
|
|
<td>
|
|
<p>
|
|
64
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
SUSE Linux AMD64 / G++ 4.1
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
Peak=11 Mean=4
|
|
</p>
|
|
</td>
|
|
</tr>
|
|
<tr>
|
|
<td>
|
|
<p>
|
|
113
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
HP-UX / HP aCC 6
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
Peak=15 Mean=4
|
|
</p>
|
|
</td>
|
|
</tr>
|
|
</tbody>
|
|
</table></div>
|
|
</div>
|
|
<br class="table-break"><div class="table">
|
|
<a name="math_toolkit.bessel.mbessel.errors_rates_in_cyl_bessel_k"></a><p class="title"><b>Table 3.24. Errors Rates in cyl_bessel_k</b></p>
|
|
<div class="table-contents"><table class="table" summary="Errors Rates in cyl_bessel_k">
|
|
<colgroup>
|
|
<col>
|
|
<col>
|
|
<col>
|
|
</colgroup>
|
|
<thead><tr>
|
|
<th>
|
|
<p>
|
|
Significand Size
|
|
</p>
|
|
</th>
|
|
<th>
|
|
<p>
|
|
Platform and Compiler
|
|
</p>
|
|
</th>
|
|
<th>
|
|
<p>
|
|
K<sub>v</sub>
|
|
</p>
|
|
</th>
|
|
</tr></thead>
|
|
<tbody>
|
|
<tr>
|
|
<td>
|
|
<p>
|
|
53
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
Win32 / Visual C++ 8.0
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
Peak=9 Mean=2
|
|
</p>
|
|
<p>
|
|
GSL Peak=9
|
|
</p>
|
|
</td>
|
|
</tr>
|
|
<tr>
|
|
<td>
|
|
<p>
|
|
64
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
Red Hat Linux IA64 / G++ 3.4
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
Peak=10 Mean=2
|
|
</p>
|
|
</td>
|
|
</tr>
|
|
<tr>
|
|
<td>
|
|
<p>
|
|
64
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
SUSE Linux AMD64 / G++ 4.1
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
Peak=10 Mean=2
|
|
</p>
|
|
</td>
|
|
</tr>
|
|
<tr>
|
|
<td>
|
|
<p>
|
|
113
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
HP-UX / HP aCC 6
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
Peak=12 Mean=5
|
|
</p>
|
|
</td>
|
|
</tr>
|
|
</tbody>
|
|
</table></div>
|
|
</div>
|
|
<br class="table-break"><h5>
|
|
<a name="math_toolkit.bessel.mbessel.h4"></a>
|
|
<span class="phrase"><a name="math_toolkit.bessel.mbessel.implementation"></a></span><a class="link" href="mbessel.html#math_toolkit.bessel.mbessel.implementation">Implementation</a>
|
|
</h5>
|
|
<p>
|
|
The following are handled as special cases first:
|
|
</p>
|
|
<p>
|
|
When computing I<sub>v</sub>   for <span class="emphasis"><em>x < 0</em></span>, then ν   must be an integer
|
|
or a domain error occurs. If ν   is an integer, then the function is odd if ν   is
|
|
odd and even if ν   is even, and we can reflect to <span class="emphasis"><em>x > 0</em></span>.
|
|
</p>
|
|
<p>
|
|
For I<sub>v</sub>   with v equal to 0, 1 or 0.5 are handled as special cases.
|
|
</p>
|
|
<p>
|
|
The 0 and 1 cases use minimax rational approximations on finite and infinite
|
|
intervals. The coefficients are from:
|
|
</p>
|
|
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
|
|
<li class="listitem">
|
|
J.M. Blair and C.A. Edwards, <span class="emphasis"><em>Stable rational minimax approximations
|
|
to the modified Bessel functions I_0(x) and I_1(x)</em></span>, Atomic
|
|
Energy of Canada Limited Report 4928, Chalk River, 1974.
|
|
</li>
|
|
<li class="listitem">
|
|
S. Moshier, <span class="emphasis"><em>Methods and Programs for Mathematical Functions</em></span>,
|
|
Ellis Horwood Ltd, Chichester, 1989.
|
|
</li>
|
|
</ul></div>
|
|
<p>
|
|
While the 0.5 case is a simple trigonometric function:
|
|
</p>
|
|
<p>
|
|
I<sub>0.5</sub>(x) = sqrt(2 / πx) * sinh(x)
|
|
</p>
|
|
<p>
|
|
For K<sub>v</sub>   with <span class="emphasis"><em>v</em></span> an integer, the result is calculated using
|
|
the recurrence relation:
|
|
</p>
|
|
<p>
|
|
<span class="inlinemediaobject"><img src="../../../equations/mbessel5.png"></span>
|
|
</p>
|
|
<p>
|
|
starting from K<sub>0</sub>   and K<sub>1</sub>   which are calculated using rational the approximations
|
|
above. These rational approximations are accurate to around 19 digits, and
|
|
are therefore only used when T has no more than 64 binary digits of precision.
|
|
</p>
|
|
<p>
|
|
When <span class="emphasis"><em>x</em></span> is small compared to <span class="emphasis"><em>v</em></span>,
|
|
I<sub>v</sub>x   is best computed directly from the series:
|
|
</p>
|
|
<p>
|
|
<span class="inlinemediaobject"><img src="../../../equations/mbessel17.png"></span>
|
|
</p>
|
|
<p>
|
|
In the general case, we first normalize ν   to [<code class="literal">0, [inf]</code>)
|
|
with the help of the reflection formulae:
|
|
</p>
|
|
<p>
|
|
<span class="inlinemediaobject"><img src="../../../equations/mbessel9.png"></span>
|
|
</p>
|
|
<p>
|
|
<span class="inlinemediaobject"><img src="../../../equations/mbessel10.png"></span>
|
|
</p>
|
|
<p>
|
|
Let μ   = ν - floor(ν + 1/2), then μ   is the fractional part of ν   such that |μ| <= 1/2
|
|
(we need this for convergence later). The idea is to calculate K<sub>μ</sub>(x) and K<sub>μ+1</sub>(x),
|
|
and use them to obtain I<sub>ν</sub>(x) and K<sub>ν</sub>(x).
|
|
</p>
|
|
<p>
|
|
The algorithm is proposed by Temme in N.M. Temme, <span class="emphasis"><em>On the numerical
|
|
evaluation of the modified bessel function of the third kind</em></span>,
|
|
Journal of Computational Physics, vol 19, 324 (1975), which needs two continued
|
|
fractions as well as the Wronskian:
|
|
</p>
|
|
<p>
|
|
<span class="inlinemediaobject"><img src="../../../equations/mbessel11.png"></span>
|
|
</p>
|
|
<p>
|
|
<span class="inlinemediaobject"><img src="../../../equations/mbessel12.png"></span>
|
|
</p>
|
|
<p>
|
|
<span class="inlinemediaobject"><img src="../../../equations/mbessel8.png"></span>
|
|
</p>
|
|
<p>
|
|
The continued fractions are computed using the modified Lentz's method (W.J.
|
|
Lentz, <span class="emphasis"><em>Generating Bessel functions in Mie scattering calculations
|
|
using continued fractions</em></span>, Applied Optics, vol 15, 668 (1976)).
|
|
Their convergence rates depend on <span class="emphasis"><em>x</em></span>, therefore we need
|
|
different strategies for large <span class="emphasis"><em>x</em></span> and small <span class="emphasis"><em>x</em></span>.
|
|
</p>
|
|
<p>
|
|
<span class="emphasis"><em>x > v</em></span>, CF1 needs O(<span class="emphasis"><em>x</em></span>) iterations
|
|
to converge, CF2 converges rapidly.
|
|
</p>
|
|
<p>
|
|
<span class="emphasis"><em>x <= v</em></span>, CF1 converges rapidly, CF2 fails to converge
|
|
when <span class="emphasis"><em>x</em></span> <code class="literal">-></code> 0.
|
|
</p>
|
|
<p>
|
|
When <span class="emphasis"><em>x</em></span> is large (<span class="emphasis"><em>x</em></span> > 2), both
|
|
continued fractions converge (CF1 may be slow for really large <span class="emphasis"><em>x</em></span>).
|
|
K<sub>μ</sub>   and K<sub>μ+1</sub>  
|
|
can be calculated by
|
|
</p>
|
|
<p>
|
|
<span class="inlinemediaobject"><img src="../../../equations/mbessel13.png"></span>
|
|
</p>
|
|
<p>
|
|
where
|
|
</p>
|
|
<p>
|
|
<span class="inlinemediaobject"><img src="../../../equations/mbessel14.png"></span>
|
|
</p>
|
|
<p>
|
|
<span class="emphasis"><em>S</em></span> is also a series that is summed along with CF2, see
|
|
I.J. Thompson and A.R. Barnett, <span class="emphasis"><em>Modified Bessel functions I_v and
|
|
K_v of real order and complex argument to selected accuracy</em></span>, Computer
|
|
Physics Communications, vol 47, 245 (1987).
|
|
</p>
|
|
<p>
|
|
When <span class="emphasis"><em>x</em></span> is small (<span class="emphasis"><em>x</em></span> <= 2), CF2
|
|
convergence may fail (but CF1 works very well). The solution here is Temme's
|
|
series:
|
|
</p>
|
|
<p>
|
|
<span class="inlinemediaobject"><img src="../../../equations/mbessel15.png"></span>
|
|
</p>
|
|
<p>
|
|
where
|
|
</p>
|
|
<p>
|
|
<span class="inlinemediaobject"><img src="../../../equations/mbessel16.png"></span>
|
|
</p>
|
|
<p>
|
|
f<sub>k</sub>   and h<sub>k</sub>  
|
|
are also computed by recursions (involving gamma functions), but
|
|
the formulas are a little complicated, readers are referred to N.M. Temme,
|
|
<span class="emphasis"><em>On the numerical evaluation of the modified Bessel function of
|
|
the third kind</em></span>, Journal of Computational Physics, vol 19, 324
|
|
(1975). Note: Temme's series converge only for |μ| <= 1/2.
|
|
</p>
|
|
<p>
|
|
K<sub>ν</sub>(x) is then calculated from the forward recurrence, as is K<sub>ν+1</sub>(x). With these
|
|
two values and f<sub>ν</sub>, the Wronskian yields I<sub>ν</sub>(x) directly.
|
|
</p>
|
|
</div>
|
|
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
|
|
<td align="left"></td>
|
|
<td align="right"><div class="copyright-footer">Copyright © 2006-2010, 2012, 2013 Paul A. Bristow, Christopher Kormanyos,
|
|
Hubert Holin, Bruno Lalande, John Maddock, Johan Råde, Gautam Sewani, Benjamin
|
|
Sobotta, Thijs van den Berg, Daryle Walker and Xiaogang Zhang<p>
|
|
Distributed under the Boost Software License, Version 1.0. (See accompanying
|
|
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
|
|
</p>
|
|
</div></td>
|
|
</tr></table>
|
|
<hr>
|
|
<div class="spirit-nav">
|
|
<a accesskey="p" href="bessel_root.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../bessel.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="sph_bessel.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
|
|
</div>
|
|
</body>
|
|
</html>
|