349 lines
13 KiB
C++
349 lines
13 KiB
C++
// root_finding_example.cpp
|
|
|
|
// Copyright Paul A. Bristow 2010.
|
|
|
|
// Use, modification and distribution are subject to the
|
|
// Boost Software License, Version 1.0.
|
|
// (See accompanying file LICENSE_1_0.txt
|
|
// or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
// Example of finding roots using Newton-Raphson, Halley
|
|
|
|
// Note that this file contains Quickbook mark-up as well as code
|
|
// and comments, don't change any of the special comment mark-ups!
|
|
|
|
//#ifdef _MSC_VER
|
|
//# pragma warning(disable: 4180) // qualifier has no effect (in Fusion).
|
|
//#endif
|
|
|
|
//#define BOOST_MATH_INSTRUMENT
|
|
|
|
//[root_finding_example1
|
|
/*`
|
|
This example demonstrates how to use the various tools for root finding
|
|
taking the simple cube root function (cbrt) as an example.
|
|
It shows how use of derivatives can improve the speed.
|
|
(But is only a demonstration and does not try to make the ultimate improvements of 'real-life'
|
|
implementation of boost::math::cbrt; mainly by using a better computed initial 'guess'
|
|
at `<boost/math/special_functions/cbrt.hpp>` ).
|
|
|
|
First some includes that will be needed.
|
|
Using statements are provided to list what functions are being used in this example:
|
|
you can of course qualify the names in other ways.
|
|
*/
|
|
|
|
#include <boost/math/tools/roots.hpp>
|
|
using boost::math::policies::policy;
|
|
using boost::math::tools::newton_raphson_iterate;
|
|
using boost::math::tools::halley_iterate;
|
|
using boost::math::tools::eps_tolerance; // Binary functor for specified number of bits.
|
|
using boost::math::tools::bracket_and_solve_root;
|
|
using boost::math::tools::toms748_solve;
|
|
|
|
#include <boost/math/tools/tuple.hpp>
|
|
// using boost::math::tuple;
|
|
// using boost::math::make_tuple;
|
|
// using boost::math::tie;
|
|
// which provide convenient aliases for various implementations,
|
|
// including std::tr1, depending on what is available.
|
|
|
|
//] [/root_finding_example1]
|
|
|
|
#include <iostream>
|
|
using std::cout; using std::endl;
|
|
#include <iomanip>
|
|
using std::setw; using std::setprecision;
|
|
#include <limits>
|
|
using std::numeric_limits;
|
|
|
|
//[root_finding_example2
|
|
/*`
|
|
|
|
Let's suppose we want to find the cube root of a number.
|
|
|
|
The equation we want to solve is:
|
|
|
|
__spaces ['f](x) = x[cubed]
|
|
|
|
We will first solve this without using any information
|
|
about the slope or curvature of the cbrt function.
|
|
|
|
We then show how adding what we can know, for this function, about the slope,
|
|
the 1st derivation /f'(x)/, will speed homing in on the solution,
|
|
and then finally how adding the curvature /f''(x)/ as well will improve even more.
|
|
|
|
The 1st and 2nd derivatives of x[cubed] are:
|
|
|
|
__spaces ['f]\'(x) = 2x[sup2]
|
|
|
|
__spaces ['f]\'\'(x) = 6x
|
|
*/
|
|
|
|
template <class T>
|
|
struct cbrt_functor_1
|
|
{ // cube root of x using only function - no derivatives.
|
|
cbrt_functor_1(T const& to_find_root_of) : value(to_find_root_of)
|
|
{ // Constructor stores value to find root of.
|
|
// For example: calling cbrt_functor_<T>(x) to get cube root of x.
|
|
}
|
|
T operator()(T const& x)
|
|
{ // Return both f(x)only.
|
|
T fx = x*x*x - value; // Difference (estimate x^3 - value).
|
|
return fx;
|
|
}
|
|
private:
|
|
T value; // to be 'cube_rooted'.
|
|
};
|
|
|
|
/*`Implementing the cube root function itself is fairly trivial now:
|
|
the hardest part is finding a good approximation to begin with.
|
|
In this case we'll just divide the exponent by three.
|
|
(There are better but more complex guess algorithms used in 'real-life'.)
|
|
|
|
Cube root function is 'Really Well Behaved' in that it is monotonic
|
|
and has only one root (we leave negative values 'as an exercise for the student').
|
|
*/
|
|
|
|
template <class T>
|
|
T cbrt_1(T x)
|
|
{ // return cube root of x using bracket_and_solve (no derivatives).
|
|
using namespace std; // Help ADL of std functions.
|
|
using namespace boost::math;
|
|
int exponent;
|
|
frexp(x, &exponent); // Get exponent of z (ignore mantissa).
|
|
T guess = ldexp(1., exponent/3); // Rough guess is to divide the exponent by three.
|
|
T factor = 2; // To multiply
|
|
int digits = std::numeric_limits<T>::digits; // Maximum possible binary digits accuracy for type T.
|
|
// digits used to control how accurate to try to make the result.
|
|
int get_digits = (digits * 3) /4; // Near maximum (3/4) possible accuracy.
|
|
//cout << ", std::numeric_limits<" << typeid(T).name() << ">::digits = " << digits
|
|
// << ", accuracy " << get_digits << " bits."<< endl;
|
|
|
|
//boost::uintmax_t maxit = (std::numeric_limits<boost::uintmax_t>::max)();
|
|
// (std::numeric_limits<boost::uintmax_t>::max)() = 18446744073709551615
|
|
// which is more than we might wish to wait for!!!
|
|
// so we can choose some reasonable estimate of how many iterations may be needed.
|
|
const boost::uintmax_t maxit = 10;
|
|
boost::uintmax_t it = maxit; // Initally our chosen max iterations, but updated with actual.
|
|
// We could also have used a maximum iterations provided by any policy:
|
|
// boost::uintmax_t max_it = policies::get_max_root_iterations<Policy>();
|
|
bool is_rising = true; // So if result if guess^3 is too low, try increasing guess.
|
|
eps_tolerance<double> tol(get_digits);
|
|
std::pair<T, T> r =
|
|
bracket_and_solve_root(cbrt_functor_1<T>(x), guess, factor, is_rising, tol, it);
|
|
|
|
// Can show how many iterations (this information is lost outside cbrt_1).
|
|
cout << "Iterations " << maxit << endl;
|
|
if(it >= maxit)
|
|
{ //
|
|
cout << "Unable to locate solution in chosen iterations:"
|
|
" Current best guess is between " << r.first << " and " << r.second << endl;
|
|
}
|
|
return r.first + (r.second - r.first)/2; // Midway between brackets.
|
|
} // T cbrt_1(T x)
|
|
|
|
|
|
//[root_finding_example2
|
|
/*`
|
|
We now solve the same problem, but using more information about the function,
|
|
to show how this can speed up finding the best estimate of the root.
|
|
|
|
For this function, the 1st differential (the slope of the tangent to a curve at any point) is known.
|
|
|
|
[@http://en.wikipedia.org/wiki/Derivative#Derivatives_of_elementary_functions derivatives]
|
|
gives some reminders.
|
|
|
|
Using the rule that the derivative of x^n for positive n (actually all nonzero n) is nx^n-1,
|
|
allows use to get the 1st differential as 3x^2.
|
|
|
|
To see how this extra information is used to find the root, view this demo:
|
|
[@http://en.wikipedia.org/wiki/Newton%27s_methodNewton Newton-Raphson iterations].
|
|
|
|
We need to define a different functor that returns
|
|
both the evaluation of the function to solve, along with its first derivative:
|
|
|
|
To \'return\' two values, we use a pair of floating-point values:
|
|
*/
|
|
template <class T>
|
|
struct cbrt_functor_2
|
|
{ // Functor also returning 1st derviative.
|
|
cbrt_functor_2(T const& to_find_root_of) : value(to_find_root_of)
|
|
{ // Constructor stores value to find root of,
|
|
// for example: calling cbrt_functor_2<T>(x) to use to get cube root of x.
|
|
}
|
|
std::pair<T, T> operator()(T const& x)
|
|
{ // Return both f(x) and f'(x).
|
|
T fx = x*x*x - value; // Difference (estimate x^3 - value).
|
|
T dx = 3 * x*x; // 1st derivative = 3x^2.
|
|
return std::make_pair(fx, dx); // 'return' both fx and dx.
|
|
}
|
|
private:
|
|
T value; // to be 'cube_rooted'.
|
|
}; // cbrt_functor_2
|
|
|
|
/*`Our cube root function is now:*/
|
|
|
|
template <class T>
|
|
T cbrt_2(T x)
|
|
{ // return cube root of x using 1st derivative and Newton_Raphson.
|
|
int exponent;
|
|
frexp(x, &exponent); // Get exponent of z (ignore mantissa).
|
|
T guess = ldexp(1., exponent/3); // Rough guess is to divide the exponent by three.
|
|
T min = ldexp(0.5, exponent/3); // Minimum possible value is half our guess.
|
|
T max = ldexp(2., exponent/3);// Maximum possible value is twice our guess.
|
|
int digits = std::numeric_limits<T>::digits; // Maximum possible binary digits accuracy for type T.
|
|
// digits used to control how accurate to try to make the result.
|
|
int get_digits = (digits * 3) /4; // Near maximum (3/4) possible accuracy.
|
|
|
|
//boost::uintmax_t maxit = (std::numeric_limits<boost::uintmax_t>::max)();
|
|
// the default (std::numeric_limits<boost::uintmax_t>::max)() = 18446744073709551615
|
|
// which is more than we might wish to wait for!!! so we can reduce it
|
|
boost::uintmax_t maxit = 10;
|
|
//cout << "Max Iterations " << maxit << endl; //
|
|
T result = newton_raphson_iterate(cbrt_functor_2<T>(x), guess, min, max, get_digits, maxit);
|
|
// Can show how many iterations (updated by newton_raphson_iterate) but lost on exit.
|
|
// cout << "Iterations " << maxit << endl;
|
|
return result;
|
|
}
|
|
|
|
/*`
|
|
Finally need to define yet another functor that returns
|
|
both the evaluation of the function to solve,
|
|
along with its first and second derivatives:
|
|
|
|
f''(x) = 3 * 3x
|
|
|
|
To \'return\' three values, we use a tuple of three floating-point values:
|
|
*/
|
|
|
|
template <class T>
|
|
struct cbrt_functor_3
|
|
{ // Functor returning both 1st and 2nd derivatives.
|
|
cbrt_functor_3(T const& to_find_root_of) : value(to_find_root_of)
|
|
{ // Constructor stores value to find root of, for example:
|
|
// calling cbrt_functor_3<T>(x) to get cube root of x,
|
|
}
|
|
|
|
// using boost::math::tuple; // to return three values.
|
|
boost::math::tuple<T, T, T> operator()(T const& x)
|
|
{ // Return both f(x) and f'(x) and f''(x).
|
|
using boost::math::make_tuple;
|
|
T fx = x*x*x - value; // Difference (estimate x^3 - value).
|
|
T dx = 3 * x*x; // 1st derivative = 3x^2.
|
|
T d2x = 6 * x; // 2nd derivative = 6x.
|
|
return make_tuple(fx, dx, d2x); // 'return' fx, dx and d2x.
|
|
}
|
|
private:
|
|
T value; // to be 'cube_rooted'.
|
|
}; // struct cbrt_functor_3
|
|
|
|
/*`Our cube function is now:*/
|
|
|
|
template <class T>
|
|
T cbrt_3(T x)
|
|
{ // return cube root of x using 1st and 2nd derivatives and Halley.
|
|
//using namespace std; // Help ADL of std functions.
|
|
using namespace boost::math;
|
|
int exponent;
|
|
frexp(x, &exponent); // Get exponent of z (ignore mantissa).
|
|
T guess = ldexp(1., exponent/3); // Rough guess is to divide the exponent by three.
|
|
T min = ldexp(0.5, exponent/3); // Minimum possible value is half our guess.
|
|
T max = ldexp(2., exponent/3);// Maximum possible value is twice our guess.
|
|
int digits = std::numeric_limits<T>::digits; // Maximum possible binary digits accuracy for type T.
|
|
// digits used to control how accurate to try to make the result.
|
|
int get_digits = (digits * 3) /4; // Near maximum (3/4) possible accuracy.
|
|
//cout << "Value " << x << ", guess " << guess
|
|
// << ", min " << min << ", max " << max
|
|
// << ", std::numeric_limits<" << typeid(T).name() << ">::digits = " << digits
|
|
// << ", accuracy " << get_digits << " bits."<< endl;
|
|
|
|
//boost::uintmax_t maxit = (std::numeric_limits<boost::uintmax_t>::max)();
|
|
// the default (std::numeric_limits<boost::uintmax_t>::max)() = 18446744073709551615
|
|
// which is more than we might wish to wait for!!! so we can reduce it
|
|
boost::uintmax_t maxit = 10;
|
|
//cout << "Max Iterations " << maxit << endl; //
|
|
T result = halley_iterate(cbrt_functor_3<T>(x), guess, min, max, digits, maxit);
|
|
// Can show how many iterations (updated by newton_raphson_iterate).
|
|
cout << "Iterations " << maxit << endl;
|
|
return result;
|
|
} // cbrt_3(x)
|
|
|
|
|
|
int main()
|
|
{
|
|
cout << "Cube Root finding (cbrt) Example." << endl;
|
|
cout.precision(std::numeric_limits<double>::max_digits10);
|
|
// Show all possibly significant decimal digits.
|
|
try
|
|
{
|
|
|
|
double v27 = 27; // that has an exact integer cube root.
|
|
double v28 = 28; // whose cube root is not exactly representable.
|
|
|
|
// Using bracketing:
|
|
double r = cbrt_1(v27);
|
|
cout << "cbrt_1(" << v27 << ") = " << r << endl;
|
|
r = cbrt_1(v28);
|
|
cout << "cbrt_1(" << v28 << ") = " << r << endl;
|
|
|
|
// Using 1st differential Newton-Raphson:
|
|
r = cbrt_2(v27);
|
|
cout << "cbrt_1(" << v27 << ") = " << r << endl;
|
|
r = cbrt_2(v28);
|
|
cout << "cbrt_2(" << v28 << ") = " << r << endl;
|
|
|
|
// Using Halley with 1st and 2nd differentials.
|
|
r = cbrt_3(v27);
|
|
cout << "cbrt_3(" << v27 << ") = " << r << endl;
|
|
r = cbrt_3(v28);
|
|
cout << "cbrt_3(" << v28 << ") = " << r << endl;
|
|
|
|
|
|
|
|
//] [/root_finding_example2]
|
|
}
|
|
catch(const std::exception& e)
|
|
{ // Always useful to include try & catch blocks because default policies
|
|
// are to throw exceptions on arguments that cause errors like underflow, overflow.
|
|
// Lacking try & catch blocks, the program will abort without a message below,
|
|
// which may give some helpful clues as to the cause of the exception.
|
|
std::cout <<
|
|
"\n""Message from thrown exception was:\n " << e.what() << std::endl;
|
|
}
|
|
return 0;
|
|
} // int main()
|
|
|
|
//[root_finding_example_output
|
|
/*`
|
|
Normal output is:
|
|
|
|
[pre
|
|
root_finding_example.cpp
|
|
Generating code
|
|
Finished generating code
|
|
root_finding_example.vcxproj -> J:\Cpp\MathToolkit\test\Math_test\Release\root_finding_example.exe
|
|
Cube Root finding (cbrt) Example.
|
|
Iterations 10
|
|
cbrt_1(27) = 3
|
|
Iterations 10
|
|
Unable to locate solution in chosen iterations: Current best guess is between 3.0365889718756613 and 3.0365889718756627
|
|
cbrt_1(28) = 3.0365889718756618
|
|
cbrt_1(27) = 3
|
|
cbrt_2(28) = 3.0365889718756627
|
|
Iterations 4
|
|
cbrt_3(27) = 3
|
|
Iterations 5
|
|
cbrt_3(28) = 3.0365889718756627
|
|
|
|
] [/pre]
|
|
|
|
to get some (much!) diagnostic output we can add
|
|
|
|
#define BOOST_MATH_INSTRUMENT
|
|
|
|
[pre
|
|
|
|
]
|
|
*/
|
|
//] [/root_finding_example_output]
|