// test_owens_t.cpp // Copyright Paul A. Bristow 2012. // Copyright Benjamin Sobotta 2012. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt // or copy at http://www.boost.org/LICENSE_1_0.txt) // Tested using some 30 decimal digit accuracy values from: // Fast and accurate calculation of Owen's T-function // Mike Patefield, and David Tandy // Journal of Statistical Software, 5 (5), 1-25 (2000). // http://www.jstatsoft.org/v05/a05/paper Table 3, page 15 // Values of T(h,a) accurate to thirty figures were calculated using 128 bit arithmetic by // evaluating (9) with m = 48, the summation over k being continued until additional terms did // not alter the result. The resultant values Tacc(h,a) say, were validated by evaluating (8) with // m = 48 (i.e. 96 point Gaussian quadrature). #define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error #ifdef _MSC_VER # pragma warning (disable : 4127) // conditional expression is constant # pragma warning (disable : 4305) // 'initializing' : truncation from 'double' to 'const float' // ?? TODO get rid of these warnings? #endif #include // for real_concept. using ::boost::math::concepts::real_concept; #include // for owens_t function. using boost::math::owens_t; #include #define BOOST_TEST_MAIN #include #include #include #include "libs/math/test/handle_test_result.hpp" #include "libs/math/test/table_type.hpp" #include "libs/math/test/functor.hpp" // // Defining TEST_CPP_DEC_FLOAT enables testing of multiprecision support. // This requires the multiprecision library from sandbox/big_number. // Note that these tests *do not pass*, but they do give an idea of the // error rates that can be expected.... // #ifdef TEST_CPP_DEC_FLOAT #include template inline R convert_to(const char* s) { try{ return boost::lexical_cast(s); } catch(const boost::bad_lexical_cast&) { return 0; } } #define SC_(x) convert_to(BOOST_STRINGIZE(x)) #endif #include "owens_t_T7.hpp" #include using std::cout; using std::endl; #include using std::numeric_limits; void expected_results() { // // Define the max and mean errors expected for // various compilers and platforms. // const char* largest_type; #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS if(boost::math::policies::digits >() == boost::math::policies::digits >()) { largest_type = "(long\\s+)?double|real_concept"; } else { largest_type = "long double|real_concept"; } #else largest_type = "(long\\s+)?double"; #endif // // Catch all cases come last: // if(std::numeric_limits::digits > 60) { add_expected_result( ".*", // compiler ".*", // stdlib ".*", // platform largest_type, // test type(s) ".*", // test data group "boost::math::owens_t", 500, 100); // test function } else { add_expected_result( ".*", // compiler ".*", // stdlib ".*", // platform largest_type, // test type(s) ".*", // test data group "boost::math::owens_t", 60, 5); // test function } // // Finish off by printing out the compiler/stdlib/platform names, // we do this to make it easier to mark up expected error rates. // std::cout << "Tests run with " << BOOST_COMPILER << ", " << BOOST_STDLIB << ", " << BOOST_PLATFORM << std::endl; } template void test_spot( RealType h, // RealType a, // RealType tol) // Test tolerance { BOOST_CHECK_CLOSE_FRACTION(owens_t(h, a), 3.89119302347013668966224771378e-2L, tol); } template // Any floating-point type RealType. void test_spots(RealType) { // Basic sanity checks, test data is as accurate as long double, // so set tolerance to a few epsilon expressed as a fraction. RealType tolerance = boost::math::tools::epsilon() * 30; // most OK with 3 eps tolerance. cout << "Tolerance = " << tolerance << "." << endl; using ::boost::math::owens_t; using ::boost::math::normal_distribution; BOOST_MATH_STD_USING // ADL of std names. // Checks of six sub-methods T1 to T6. BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast(0.0625L), static_cast(0.25L)), static_cast(3.89119302347013668966224771378e-2L), tolerance); // T1 BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast(6.5L), static_cast(0.4375L)), static_cast(2.00057730485083154100907167685E-11L), tolerance); // T2 BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast(7L), static_cast( 0.96875L)), static_cast(6.39906271938986853083219914429E-13L), tolerance); // T3 BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast(4.78125L), static_cast(0.0625L)), static_cast(1.06329748046874638058307112826E-7L), tolerance); // T4 BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast(2.L), static_cast(0.5L)), static_cast(8.62507798552150713113488319155E-3L), tolerance); // T5 BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast(1.L), static_cast(0.9999975L)), static_cast(6.67418089782285927715589822405E-2L), tolerance); // T6 //BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast(L), static_cast(L)), static_cast(L), tolerance); // BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast(L), static_cast(L)), static_cast(L), tolerance); // Spots values using Mathematica BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast(6.5L), static_cast(0.4375L)), static_cast(2.00057730485083154100907167684918851101649922551817956120806662022118024594547E-11L), tolerance); BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast(0.4375L), static_cast(6.5L)), static_cast(0.16540130125449396247498691826626273249659241838438244251206819782787761751256L), tolerance); BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast(7.L), static_cast(0.96875L)), static_cast(6.39906271938986853083219914428916013764797190941459233223182225724846022843930e-13L), tolerance); BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast(0.96875L), static_cast(7.L)), static_cast(0.08316748474602973770533230453272140919966614259525787470390475393923633179072L), tolerance); BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast(4.78125L), static_cast(0.0625L)), static_cast(1.06329748046874638058307112826015825291136503488102191050906959246644942646701e-7L), tolerance); BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast(0.0625L), static_cast(4.78125L)), static_cast(0.21571185819897989857261253680409017017649352928888660746045361855686569265171L), tolerance); BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast(2.L), static_cast(0.5L)), static_cast(0.00862507798552150713113488319154637187875641190390854291100809449487812876461L), tolerance); BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast(0.5L), static_cast(2L)), static_cast(0.14158060365397839346662819588111542648867283386549027383784843786494855594607L), tolerance); // check basic properties BOOST_CHECK_EQUAL(owens_t(static_cast(0.5L), static_cast(2L)), owens_t(static_cast(-0.5L), static_cast(2L))); BOOST_CHECK_EQUAL(owens_t(static_cast(0.5L), static_cast(2L)), -owens_t(static_cast(0.5L), static_cast(-2L))); BOOST_CHECK_EQUAL(owens_t(static_cast(0.5L), static_cast(2L)), -owens_t(static_cast(-0.5L), static_cast(-2L))); // Special relations from Owen's original paper: BOOST_CHECK_EQUAL(owens_t(static_cast(0.5), static_cast(0)), static_cast(0)); BOOST_CHECK_EQUAL(owens_t(static_cast(10), static_cast(0)), static_cast(0)); BOOST_CHECK_EQUAL(owens_t(static_cast(10000), static_cast(0)), static_cast(0)); BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast(0), static_cast(2L)), atan(static_cast(2L)) / (boost::math::constants::pi() * 2), tolerance); BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast(0), static_cast(0.5L)), atan(static_cast(0.5L)) / (boost::math::constants::pi() * 2), tolerance); BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast(0), static_cast(2000L)), atan(static_cast(2000L)) / (boost::math::constants::pi() * 2), tolerance); BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast(5), static_cast(1)), cdf(normal_distribution(), 5) * cdf(complement(normal_distribution(), 5)) / 2, tolerance); BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast(0.125), static_cast(1)), cdf(normal_distribution(), 0.125) * cdf(complement(normal_distribution(), 0.125)) / 2, tolerance); if(std::numeric_limits::has_infinity) { BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast(0.125), std::numeric_limits::infinity()), cdf(complement(normal_distribution(), 0.125)) / 2, tolerance); BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast(5), std::numeric_limits::infinity()), cdf(complement(normal_distribution(), 5)) / 2, tolerance); BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast(-0.125), std::numeric_limits::infinity()), cdf(normal_distribution(), -0.125) / 2, tolerance); BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast(-5), std::numeric_limits::infinity()), cdf(normal_distribution(), -5) / 2, tolerance); } } // template void test_spots(RealType) template // Any floating-point type RealType. void check_against_T7(RealType) { // Basic sanity checks, test data is as accurate as long double, // so set tolerance to a few epsilon expressed as a fraction. RealType tolerance = boost::math::tools::epsilon() * 150; // most OK with 3 eps tolerance. cout << "Tolerance = " << tolerance << "." << endl; using ::boost::math::owens_t; using namespace std; // ADL of std names. // apply log scale because points near zero are more interesting for(RealType a = static_cast(-10.0l); a < static_cast(3l); a+= static_cast(0.2l)) for(RealType h = static_cast(-10.0l); h < static_cast(3.5l); h+= static_cast(0.2l)) { const RealType expa = exp(a); const RealType exph = exp(h); const RealType t = boost::math::owens_t(exph, expa); RealType t7 = boost::math::owens_t_T7(exph,expa); //if(!(boost::math::isnormal)(t) || !(boost::math::isnormal)(t7)) // std::cout << "a = " << expa << " h = " << exph << " t = " << t << " t7 = " << t7 << std::endl; BOOST_CHECK_CLOSE_FRACTION(t, t7, tolerance); } } // template void test_spots(RealType) template void do_test_owens_t(const T& data, const char* type_name, const char* test_name) { typedef typename T::value_type row_type; typedef Real value_type; typedef value_type (*pg)(value_type, value_type); #if defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS) pg funcp = boost::math::owens_t; #else pg funcp = boost::math::owens_t; #endif boost::math::tools::test_result result; std::cout << "Testing " << test_name << " with type " << type_name << "\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n"; // // test hermite against data: // result = boost::math::tools::test_hetero( data, bind_func(funcp, 0, 1), extract_result(2)); handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::owens_t", test_name); std::cout << std::endl; } template void test_owens_t(T, const char* name) { // // The actual test data is rather verbose, so it's in a separate file // // The contents are as follows, each row of data contains // three items, input value a, input value b and erf(a, b): // # include "owens_t.ipp" do_test_owens_t(owens_t, name, "Owens T (medium small values)"); #include "owens_t_large_data.ipp" do_test_owens_t(owens_t_large_data, name, "Owens T (large and diverse values)"); } BOOST_AUTO_TEST_CASE( test_main ) { BOOST_MATH_CONTROL_FP; expected_results(); // Basic sanity-check spot values. // (Parameter value, arbitrarily zero, only communicates the floating point type). test_spots(0.0F); // Test float. test_spots(0.0); // Test double. #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS test_spots(0.0L); // Test long double. #if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582)) test_spots(boost::math::concepts::real_concept(0.)); // Test real concept. #endif #endif check_against_T7(0.0F); // Test float. check_against_T7(0.0); // Test double. #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS check_against_T7(0.0L); // Test long double. #if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582)) check_against_T7(boost::math::concepts::real_concept(0.)); // Test real concept. #endif #endif test_owens_t(0.0F, "float"); // Test float. test_owens_t(0.0, "double"); // Test double. #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS test_owens_t(0.0L, "long double"); // Test long double. #if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582)) test_owens_t(boost::math::concepts::real_concept(0.), "real_concept"); // Test real concept. #endif #endif #ifdef TEST_CPP_DEC_FLOAT typedef boost::multiprecision::mp_number > cpp_dec_float_35; test_owens_t(cpp_dec_float_35(0), "cpp_dec_float_35"); // Test real concept. test_owens_t(boost::multiprecision::cpp_dec_float_50(0), "cpp_dec_float_50"); // Test real concept. test_owens_t(boost::multiprecision::cpp_dec_float_100(0), "cpp_dec_float_100"); // Test real concept. #endif } // BOOST_AUTO_TEST_CASE( test_main ) /* Output: Description: Autorun "J:\Cpp\MathToolkit\test\Math_test\Debug\test_owens_t.exe" Running 1 test case... Tests run with Microsoft Visual C++ version 10.0, Dinkumware standard library version 520, Win32 Tolerance = 3.57628e-006. Tolerance = 6.66134e-015. Tolerance = 6.66134e-015. Tolerance = 6.66134e-015. Tolerance = 1.78814e-005. Tolerance = 3.33067e-014. Tolerance = 3.33067e-014. Tolerance = 3.33067e-014. Testing Owens T (medium small values) with type float ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ boost::math::owens_t Max = 0 RMS Mean=0 Testing Owens T (large and diverse values) with type float ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ boost::math::owens_t Max = 0 RMS Mean=0 Testing Owens T (medium small values) with type double ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ boost::math::owens_t Max = 4.375 RMS Mean=0.9728 worst case at row: 81 { 4.4206809997558594, 0.1269868016242981, 1.0900281236140834e-006 } Testing Owens T (large and diverse values) with type double ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ boost::math::owens_t Max = 3.781 RMS Mean=0.6206 worst case at row: 430 { 3.4516773223876953, 0.0010718167759478092, 4.413983645332431e-007 } Testing Owens T (medium small values) with type long double ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ boost::math::owens_t Max = 4.375 RMS Mean=0.9728 worst case at row: 81 { 4.4206809997558594, 0.1269868016242981, 1.0900281236140834e-006 } Testing Owens T (large and diverse values) with type long double ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ boost::math::owens_t Max = 3.781 RMS Mean=0.6206 worst case at row: 430 { 3.4516773223876953, 0.0010718167759478092, 4.413983645332431e-007 } Testing Owens T (medium small values) with type real_concept ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ boost::math::owens_t Max = 4.375 RMS Mean=1.032 worst case at row: 81 { 4.4206809997558594, 0.1269868016242981, 1.0900281236140834e-006 } Testing Owens T (large and diverse values) with type real_concept ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ boost::math::owens_t Max = 21.04 RMS Mean=1.102 worst case at row: 439 { 3.4516773223876953, 0.98384737968444824, 0.00013923002576038691 } *** No errors detected */