// test_nc_chi_squared.cpp // Copyright John Maddock 2008. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt // or copy at http://www.boost.org/LICENSE_1_0.txt) #include #ifdef _MSC_VER #pragma warning (disable:4127 4512) #endif #if !defined(TEST_FLOAT) && !defined(TEST_DOUBLE) && !defined(TEST_LDOUBLE) && !defined(TEST_REAL_CONCEPT) # define TEST_FLOAT # define TEST_DOUBLE # define TEST_LDOUBLE # define TEST_REAL_CONCEPT #endif #include // for real_concept #include // for chi_squared_distribution #include // for chi_squared_distribution #define BOOST_TEST_MAIN #include // for test_main #include #include #include // for BOOST_CHECK_CLOSE #include "test_out_of_range.hpp" #include "functor.hpp" #include "handle_test_result.hpp" #include "test_nccs_hooks.hpp" #include "table_type.hpp" #include using std::cout; using std::endl; #include using std::numeric_limits; #define BOOST_CHECK_CLOSE_EX(a, b, prec, i) \ {\ unsigned int failures = boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed;\ BOOST_CHECK_CLOSE(a, b, prec); \ if(failures != boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed)\ {\ std::cerr << "Failure was at row " << i << std::endl;\ std::cerr << std::setprecision(35); \ std::cerr << "{ " << data[i][0] << " , " << data[i][1] << " , " << data[i][2];\ std::cerr << " , " << data[i][3] << " , " << data[i][4] << " } " << std::endl;\ }\ } #define BOOST_CHECK_EX(a, i) \ {\ unsigned int failures = boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed;\ BOOST_CHECK(a); \ if(failures != boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed)\ {\ std::cerr << "Failure was at row " << i << std::endl;\ std::cerr << std::setprecision(35); \ std::cerr << "{ " << data[i][0] << " , " << data[i][1] << " , " << data[i][2];\ std::cerr << " , " << data[i][3] << " , " << data[i][4] << " } " << std::endl;\ }\ } void expected_results() { // // Define the max and mean errors expected for // various compilers and platforms. // const char* largest_type; #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS if(boost::math::policies::digits >() == boost::math::policies::digits >()) { largest_type = "(long\\s+)?double|real_concept"; } else { largest_type = "long double|real_concept"; } #else largest_type = "(long\\s+)?double|real_concept"; #endif add_expected_result( "[^|]*", // compiler "[^|]*", // stdlib "Mac OS", // platform largest_type, // test type(s) "[^|]*medium[^|]*", // test data group "[^|]*", 550, 100); // test function // // Catch all cases come last: // add_expected_result( "[^|]*", // compiler "[^|]*", // stdlib "[^|]*", // platform largest_type, // test type(s) "[^|]*medium[^|]*", // test data group "[^|]*", 350, 100); // test function add_expected_result( "[^|]*", // compiler "[^|]*", // stdlib "[^|]*", // platform largest_type, // test type(s) "[^|]*large[^|]*", // test data group "[^|]*", 17000, 3000); // test function // // Allow some long double error to creep into // the double results: // add_expected_result( "[^|]*", // compiler "[^|]*", // stdlib "[^|]*", // platform "double", // test type(s) "[^|]*", // test data group "[^|]*", 3, 2); // test function // // Finish off by printing out the compiler/stdlib/platform names, // we do this to make it easier to mark up expected error rates. // std::cout << "Tests run with " << BOOST_COMPILER << ", " << BOOST_STDLIB << ", " << BOOST_PLATFORM << std::endl; } template RealType naive_pdf(RealType v, RealType lam, RealType x) { // Formula direct from // http://mathworld.wolfram.com/NoncentralChi-SquaredDistribution.html // with no simplification: RealType sum, term, prefix(1); RealType eps = boost::math::tools::epsilon(); term = sum = pdf(boost::math::chi_squared_distribution(v), x); for(int i = 1;; ++i) { prefix *= lam / (2 * i); term = prefix * pdf(boost::math::chi_squared_distribution(v + 2 * i), x); sum += term; if(term / sum < eps) break; } return sum * exp(-lam/2); } template void test_spot( RealType df, // Degrees of freedom RealType ncp, // non-centrality param RealType cs, // Chi Square statistic RealType P, // CDF RealType Q, // Complement of CDF RealType tol) // Test tolerance { boost::math::non_central_chi_squared_distribution dist(df, ncp); BOOST_CHECK_CLOSE( cdf(dist, cs), P, tol); try{ BOOST_CHECK_CLOSE( pdf(dist, cs), naive_pdf(dist.degrees_of_freedom(), ncp, cs), tol * 150); } catch(const std::overflow_error&) {} if((P < 0.99) && (Q < 0.99)) { // // We can only check this if P is not too close to 1, // so that we can guarentee Q is reasonably free of error: // BOOST_CHECK_CLOSE( cdf(complement(dist, cs)), Q, tol); BOOST_CHECK_CLOSE( quantile(dist, P), cs, tol * 10); BOOST_CHECK_CLOSE( quantile(complement(dist, Q)), cs, tol * 10); BOOST_CHECK_CLOSE( dist.find_degrees_of_freedom(ncp, cs, P), df, tol * 10); BOOST_CHECK_CLOSE( dist.find_degrees_of_freedom(boost::math::complement(ncp, cs, Q)), df, tol * 10); BOOST_CHECK_CLOSE( dist.find_non_centrality(df, cs, P), ncp, tol * 10); BOOST_CHECK_CLOSE( dist.find_non_centrality(boost::math::complement(df, cs, Q)), ncp, tol * 10); } } template // Any floating-point type RealType. void test_spots(RealType) { RealType tolerance = (std::max)( boost::math::tools::epsilon(), (RealType)boost::math::tools::epsilon() * 5) * 150; // // At float precision we need to up the tolerance, since // the input values are rounded off to inexact quantities // the results get thrown off by a noticeable amount. // if(boost::math::tools::digits() < 50) tolerance *= 50; if(boost::is_floating_point::value != 1) tolerance *= 20; // real_concept special functions are less accurate cout << "Tolerance = " << tolerance << "%." << endl; using boost::math::chi_squared_distribution; using ::boost::math::chi_squared; using ::boost::math::cdf; using ::boost::math::pdf; // // Test against the data from Table 6 of: // // "Self-Validating Computations of Probabilities for Selected // Central and Noncentral Univariate Probability Functions." // Morgan C. Wang; William J. Kennedy // Journal of the American Statistical Association, // Vol. 89, No. 427. (Sep., 1994), pp. 878-887. // test_spot( static_cast(1), // degrees of freedom static_cast(6), // non centrality static_cast(0.00393), // Chi Squared statistic static_cast(0.2498463724258039e-2), // Probability of result (CDF), P static_cast(1-0.2498463724258039e-2), // Q = 1 - P tolerance); test_spot( static_cast(5), // degrees of freedom static_cast(1), // non centrality static_cast(9.23636), // Chi Squared statistic static_cast(0.8272918751175548), // Probability of result (CDF), P static_cast(1-0.8272918751175548), // Q = 1 - P tolerance); test_spot( static_cast(11), // degrees of freedom static_cast(21), // non centrality static_cast(24.72497), // Chi Squared statistic static_cast(0.2539481822183126), // Probability of result (CDF), P static_cast(1-0.2539481822183126), // Q = 1 - P tolerance); test_spot( static_cast(31), // degrees of freedom static_cast(6), // non centrality static_cast(44.98534), // Chi Squared statistic static_cast(0.8125198785064969), // Probability of result (CDF), P static_cast(1-0.8125198785064969), // Q = 1 - P tolerance); test_spot( static_cast(51), // degrees of freedom static_cast(1), // non centrality static_cast(38.56038), // Chi Squared statistic static_cast(0.8519497361859118e-1), // Probability of result (CDF), P static_cast(1-0.8519497361859118e-1), // Q = 1 - P tolerance * 2); test_spot( static_cast(100), // degrees of freedom static_cast(16), // non centrality static_cast(82.35814), // Chi Squared statistic static_cast(0.1184348822747824e-1), // Probability of result (CDF), P static_cast(1-0.1184348822747824e-1), // Q = 1 - P tolerance); test_spot( static_cast(300), // degrees of freedom static_cast(16), // non centrality static_cast(331.78852), // Chi Squared statistic static_cast(0.7355956710306709), // Probability of result (CDF), P static_cast(1-0.7355956710306709), // Q = 1 - P tolerance); test_spot( static_cast(500), // degrees of freedom static_cast(21), // non centrality static_cast(459.92612), // Chi Squared statistic static_cast(0.2797023600800060e-1), // Probability of result (CDF), P static_cast(1-0.2797023600800060e-1), // Q = 1 - P tolerance); test_spot( static_cast(1), // degrees of freedom static_cast(1), // non centrality static_cast(0.00016), // Chi Squared statistic static_cast(0.6121428929881423e-2), // Probability of result (CDF), P static_cast(1-0.6121428929881423e-2), // Q = 1 - P tolerance); test_spot( static_cast(1), // degrees of freedom static_cast(1), // non centrality static_cast(0.00393), // Chi Squared statistic static_cast(0.3033814229753780e-1), // Probability of result (CDF), P static_cast(1-0.3033814229753780e-1), // Q = 1 - P tolerance); RealType tol2 = boost::math::tools::epsilon() * 5 * 100; // 5 eps as a percentage boost::math::non_central_chi_squared_distribution dist(static_cast(8), static_cast(12)); RealType x = 7; using namespace std; // ADL of std names. // mean: BOOST_CHECK_CLOSE( mean(dist) , static_cast(8+12), tol2); // variance: BOOST_CHECK_CLOSE( variance(dist) , static_cast(64), tol2); // std deviation: BOOST_CHECK_CLOSE( standard_deviation(dist) , static_cast(8), tol2); // hazard: BOOST_CHECK_CLOSE( hazard(dist, x) , pdf(dist, x) / cdf(complement(dist, x)), tol2); // cumulative hazard: BOOST_CHECK_CLOSE( chf(dist, x) , -log(cdf(complement(dist, x))), tol2); // coefficient_of_variation: BOOST_CHECK_CLOSE( coefficient_of_variation(dist) , standard_deviation(dist) / mean(dist), tol2); // mode: BOOST_CHECK_CLOSE( mode(dist) , static_cast(17.184201184730857030170788677340294070728990862663L), sqrt(tolerance * 500)); BOOST_CHECK_CLOSE( median(dist), quantile( boost::math::non_central_chi_squared_distribution( static_cast(8), static_cast(12)), static_cast(0.5)), static_cast(tol2)); // skewness: BOOST_CHECK_CLOSE( skewness(dist) , static_cast(0.6875), tol2); // kurtosis: BOOST_CHECK_CLOSE( kurtosis(dist) , static_cast(3.65625), tol2); // kurtosis excess: BOOST_CHECK_CLOSE( kurtosis_excess(dist) , static_cast(0.65625), tol2); // Error handling checks: check_out_of_range >(1, 1); BOOST_CHECK_THROW(pdf(boost::math::non_central_chi_squared_distribution(0, 1), 0), std::domain_error); BOOST_CHECK_THROW(pdf(boost::math::non_central_chi_squared_distribution(-1, 1), 0), std::domain_error); BOOST_CHECK_THROW(pdf(boost::math::non_central_chi_squared_distribution(1, -1), 0), std::domain_error); BOOST_CHECK_THROW(quantile(boost::math::non_central_chi_squared_distribution(1, 1), -1), std::domain_error); BOOST_CHECK_THROW(quantile(boost::math::non_central_chi_squared_distribution(1, 1), 2), std::domain_error); } // template void test_spots(RealType) template T nccs_cdf(T df, T nc, T x) { return cdf(boost::math::non_central_chi_squared_distribution(df, nc), x); } template T nccs_ccdf(T df, T nc, T x) { return cdf(complement(boost::math::non_central_chi_squared_distribution(df, nc), x)); } template void do_test_nc_chi_squared(T& data, const char* type_name, const char* test) { typedef typename T::value_type row_type; typedef Real value_type; std::cout << "Testing: " << test << std::endl; value_type (*fp1)(value_type, value_type, value_type) = nccs_cdf; boost::math::tools::test_result result; result = boost::math::tools::test_hetero( data, bind_func(fp1, 0, 1, 2), extract_result(3)); handle_test_result(result, data[result.worst()], result.worst(), type_name, "CDF", test); fp1 = nccs_ccdf; result = boost::math::tools::test_hetero( data, bind_func(fp1, 0, 1, 2), extract_result(4)); handle_test_result(result, data[result.worst()], result.worst(), type_name, "CCDF", test); #ifdef TEST_OTHER fp1 = other::nccs_cdf; result = boost::math::tools::test_hetero( data, bind_func(fp1, 0, 1, 2), extract_result(3)); handle_test_result(result, data[result.worst()], result.worst(), type_name, "other::CDF", test); #endif std::cout << std::endl; } template void quantile_sanity_check(T& data, const char* type_name, const char* test) { typedef typename T::value_type row_type; typedef Real value_type; // // Tests with type real_concept take rather too long to run, so // for now we'll disable them: // if(!boost::is_floating_point::value) return; std::cout << "Testing: " << type_name << " quantile sanity check, with tests " << test << std::endl; // // These sanity checks test for a round trip accuracy of one half // of the bits in T, unless T is type float, in which case we check // for just one decimal digit. The problem here is the sensitivity // of the functions, not their accuracy. This test data was generated // for the forward functions, which means that when it is used as // the input to the inverses then it is necessarily inexact. This rounding // of the input is what makes the data unsuitable for use as an accuracy check, // and also demonstrates that you can't in general round-trip these functions. // It is however a useful sanity check. // value_type precision = static_cast(ldexp(1.0, 1-boost::math::policies::digits >()/2)) * 100; if(boost::math::policies::digits >() < 50) precision = 1; // 1% or two decimal digits, all we can hope for when the input is truncated to float for(unsigned i = 0; i < data.size(); ++i) { if(Real(data[i][3]) == 0) { BOOST_CHECK(0 == quantile(boost::math::non_central_chi_squared_distribution(data[i][0], data[i][1]), data[i][3])); } else if(data[i][3] < 0.9999f) { value_type p = quantile(boost::math::non_central_chi_squared_distribution(data[i][0], data[i][1]), data[i][3]); value_type pt = data[i][2]; BOOST_CHECK_CLOSE_EX(pt, p, precision, i); } if(data[i][4] == 0) { BOOST_CHECK(0 == quantile(complement(boost::math::non_central_chi_squared_distribution(data[i][0], data[i][1]), data[i][3]))); } else if(data[i][4] < 0.9999f) { value_type p = quantile(complement(boost::math::non_central_chi_squared_distribution(data[i][0], data[i][1]), data[i][4])); value_type pt = data[i][2]; BOOST_CHECK_CLOSE_EX(pt, p, precision, i); } if(boost::math::tools::digits() > 50) { // // Sanity check mode, the accuracy of // the mode is at *best* the square root of the accuracy of the PDF: // try{ value_type m = mode(boost::math::non_central_chi_squared_distribution(data[i][0], data[i][1])); value_type p = pdf(boost::math::non_central_chi_squared_distribution(data[i][0], data[i][1]), m); BOOST_CHECK_EX(pdf(boost::math::non_central_chi_squared_distribution(data[i][0], data[i][1]), m * (1 + sqrt(precision) * 50)) <= p, i); BOOST_CHECK_EX(pdf(boost::math::non_central_chi_squared_distribution(data[i][0], data[i][1]), m * (1 - sqrt(precision)) * 50) <= p, i); } catch(const boost::math::evaluation_error& ) {} // // Sanity check degrees-of-freedom finder, don't bother at float // precision though as there's not enough data in the probability // values to get back to the correct degrees of freedom or // non-cenrality parameter: // try{ if((data[i][3] < 0.99) && (data[i][3] != 0)) { BOOST_CHECK_CLOSE_EX( boost::math::non_central_chi_squared_distribution::find_degrees_of_freedom(data[i][1], data[i][2], data[i][3]), data[i][0], precision, i); BOOST_CHECK_CLOSE_EX( boost::math::non_central_chi_squared_distribution::find_non_centrality(data[i][0], data[i][2], data[i][3]), data[i][1], precision, i); } if((data[i][4] < 0.99) && (data[i][4] != 0)) { BOOST_CHECK_CLOSE_EX( boost::math::non_central_chi_squared_distribution::find_degrees_of_freedom(boost::math::complement(data[i][1], data[i][2], data[i][4])), data[i][0], precision, i); BOOST_CHECK_CLOSE_EX( boost::math::non_central_chi_squared_distribution::find_non_centrality(boost::math::complement(data[i][0], data[i][2], data[i][4])), data[i][1], precision, i); } } catch(const std::exception& e) { BOOST_ERROR(e.what()); } } } } template void test_accuracy(T, const char* type_name) { #include "nccs.ipp" do_test_nc_chi_squared(nccs, type_name, "Non Central Chi Squared, medium parameters"); quantile_sanity_check(nccs, type_name, "Non Central Chi Squared, medium parameters"); #include "nccs_big.ipp" do_test_nc_chi_squared(nccs_big, type_name, "Non Central Chi Squared, large parameters"); quantile_sanity_check(nccs_big, type_name, "Non Central Chi Squared, large parameters"); } BOOST_AUTO_TEST_CASE( test_main ) { BOOST_MATH_CONTROL_FP; // Basic sanity-check spot values. expected_results(); // (Parameter value, arbitrarily zero, only communicates the floating point type). #ifdef TEST_FLOAT test_spots(0.0F); // Test float. #endif #ifdef TEST_DOUBLE test_spots(0.0); // Test double. #endif #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS #ifdef TEST_LDOUBLE test_spots(0.0L); // Test long double. #endif #ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS #ifdef TEST_REAL_CONCEPT test_spots(boost::math::concepts::real_concept(0.)); // Test real concept. #endif #endif #endif #ifdef TEST_FLOAT test_accuracy(0.0F, "float"); // Test float. #endif #ifdef TEST_DOUBLE test_accuracy(0.0, "double"); // Test double. #endif #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS #ifdef TEST_LDOUBLE test_accuracy(0.0L, "long double"); // Test long double. #endif #ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS #ifdef TEST_REAL_CONCEPT test_accuracy(boost::math::concepts::real_concept(0.), "real_concept"); // Test real concept. #endif #endif #endif } // BOOST_AUTO_TEST_CASE( test_main )